Indian Statistical Institute Bangalore Centre B.Math Third Year 2017-2018 Second Semester Mid-Semester Examination Statistics IV Answer as much as you can. The maximum you can score is 60. The notation used have their usual meaning unless stated otherwise. Time: - 3 hours - 1. Consider a 2×2 contingency table with variables X and Y. - (a) Define odds ratio (θ) . - (b) In the following statement fill in the blanks with justification. " $\theta = -$ when X and Y are independent, $\theta = -$ when there is a direct association and $\theta = -$ when there is a reverse association. - (c) For adults who sailed on the "Titanic" on its fateful voyage, the odds ratio between gender (female, male) and survival (yes, no) was 11.4. Consider the statement "The probability of survival for females was 11.4 times that for males". - (i) What is wrong with the interpretation? Give the correct interpretation. - (ii) The odds of survival for females equaled 2.9. For each gender, find the proportion who survived. - (iii) Find a condition on n_{ij} 's (the entries in the two-way table) which would approximately imply the statement in " " above. $$[1 + 2 \times 3 + (4 + 3 + 4) = 18]$$ Date: 01.03.18 2. Suppose $X = (X_1, \dots X_k)'$ follows multinomial distribution with parameters $(n, \pi_1, \dots \pi_k)$. Let $\phi = (\phi_1, \dots \phi_k)'$ where $\phi_i = \sqrt{\pi_i}$. Let $$V = (V_1, \dots V_k)', \ V_i = (X_i - n\pi_i)/\sqrt{n\pi_i}.$$ - (a) Show that for any k-vector b the asymptotic distribution of b'V is Normal with mean 0 and variance $b'(I_k \phi \phi')b$. - (b) Suppose A is an idempotent matrix satisfying (i) $A\phi = 0$ and (ii) rank (A) = t. Find the asymptotic distribution of V'AV. - (c) Explain how you can test the hypothesis $H_0: \pi_i = p_i, 1 \le i \le k$ against $H_1:$ not all π 's equal p_i . Justify. $$[8+6+4=18]$$ 3. Suppose X and Y are random variables with continuous distribution: their distribution functions being F(x) and G(y) respectively. $X_1, \dots X_m$ and $Y_1, \dots Y_n$ are independent random samples from the populations of X and Y respectively. Further, suppose G(x) $F(x-\triangle)$, where \triangle is a unknown real-valued parameter. Let Q_i and R_j denote the ranks of X_i and Y_j , respectively, among the N=m+n combined observations. Consider the following statistics. $$W = \sum_{i=1}^{n} R_i$$ and $U = \sum_{i=1}^{m} \sum_{j=1}^{n} \psi(Y_j - X_i)$, where $\psi(t) = 1$ if t > 0 and 0 otherwise. - (a) Show that W = U + n(n+1)/2, provided there is no tie. - (b) Show that the distribution of W is symmetric about n(N+1)/2, provided $\Delta=0$. $$[4+3=7]$$ - 4. $X_1, X_2, \dots, X_n, n > 2$ are i.i.d continuous random variables and R_i is the rank of X_i . Let $X = (X_1, \dots, X_n)$. - (a) Define anti-rank S_i of X_i . - (b) Denote the sequences of ranks and anti-ranks of $|X_i|$'s by R^+ and S^+ respectively. Define $$U_i = \begin{cases} 1 \text{ if } |X_{(i)}| \text{ corresponds to a positive } X_t \\ 0 \text{ otherwise} \end{cases}$$ and $W^+ = \sum_{i=1}^n iU_i$. Show that - (i) $W^+ = \sum_{i=1}^n \psi(X_i) R_i^+$. Here the function ψ is as in Q3. - (ii) U_i 's are i.i.d. B(1, 1/2) variables. $$[2 + (3 + 6) = 11]$$ 5. In order to study the relationship between dexterity (D) and aggression (A), n young adults were tested. Suppose the scores were (D_i, A_i) , $i = 1, \dots, n$, the ranks of D_i and A_i were R_i and S_i respectively. Define $$S_{DA} = \sum_{i=1}^{n} (R_i - \bar{R})(S_i - \bar{S}), \quad S_D = \sum_{i=1}^{n} (R_i - \bar{R})^2 \text{ and } S_A = \sum_{i=1}^{n} (S_i - \bar{S})^2,$$ $r_{SP} = S_{DA} / \sqrt{S_D \cdot S_A} \text{ and } U = \sum_{i=1}^{n} i R_i$ Show that if D and A are independent then $P[r_{SP} \ge a] = P[U \ge b]$, where a = bc + d, c and d are functions of n. Determine c and d. 6. Suppose $X_1, \dots X_n$ is a random samples from a continuous distribution with median θ . Show how you can obtain a distribution-free confidence interval for θ . [8]